Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 31(2): 74-83, Feb. 2016. tab, graf
Article in English | LILACS | ID: lil-775567

ABSTRACT

PURPOSE: To investigated the effects of exposure to an 1800 MHz electromagnetic field (EMF) on bone development during the prenatal period in rats. METHODS: Pregnant rats in the experimental group were exposed to radiation for six, 12, and 24 hours daily for 20 days. No radiation was given to the pregnant rats in the control group. We distributed the newborn rats into four groups according to prenatal EMF exposure as follows: Group 1 was not exposed to EMF; groups 2, 3, and 4 were exposed to EMF for six, 12, and 24 hours a day, respectively. The rats were evaluated at the end of the 60th day following birth. RESULTS: Increasing the duration of EMF exposure during the prenatal period resulted in a significant reduction of resting cartilage levels and a significant increase in the number of apoptotic chondrocytes and myocytes. There was also a reduction in calcineurin activities in both bone and muscle tissues. We observed that the development of the femur, tibia, and ulna were negatively affected, especially with a daily EMF exposure of 24 hours. CONCLUSION: Bone and muscle tissue development was negatively affected due to prenatal exposure to 1800 MHz radiofrequency electromagnetic field.


Subject(s)
Humans , Animals , Male , Female , Infant, Newborn , Prenatal Exposure Delayed Effects/pathology , Bone Development/radiation effects , Calcineurin/metabolism , Electromagnetic Fields/adverse effects , Time Factors , Pregnancy , Cartilage/pathology , Rats, Sprague-Dawley , Apoptosis/radiation effects , Chondrocytes/metabolism , Chondrocytes/pathology , Models, Animal , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Femur Head/pathology
2.
Dental press j. orthod. (Impr.) ; 20(1): 79-84, Jan-Feb/2015. tab, graf
Article in English | LILACS | ID: lil-741451

ABSTRACT

OBJECTIVE: The aim of the present study was to determine the morphological differences in the base of the skull of individuals with cleft lip and palate and Class III malocclusion in comparison to control groups with Class I and Class III malocclusion. METHODS: A total of 89 individuals (males and females) aged between 5 and 27 years old (Class I, n = 32; Class III, n = 29; and Class III individuals with unilateral cleft lip and palate, n = 28) attending PUC-MG Dental Center and Cleft Lip/Palate Care Center of Baleia Hospital and PUC-MG (CENTRARE) were selected. Linear and angular measurements of the base of the skull, maxilla and mandible were performed and assessed by a single calibrated examiner by means of cephalometric radiographs. Statistical analysis involved ANCOVA and Bonferroni correction. RESULTS: No significant differences with regard to the base of the skull were found between the control group (Class I) and individuals with cleft lip and palate (P > 0.017). The cleft lip/palate group differed from the Class III group only with regard to CI.Sp.Ba (P = 0.015). Individuals with cleft lip and palate had a significantly shorter maxillary length (Co-A) in comparison to the control group (P < 0.001). No significant differences were found in the mandible (Co-Gn) of the control group and individuals with cleft lip and palate (P = 1.000). CONCLUSION: The present findings suggest that there are no significant differences in the base of the skull of individuals Class I or Class III and individuals with cleft lip and palate and Class III malocclusion. .


OBJETIVO: o objetivo do presente estudo foi determinar diferenças morfológicas da base do crânio de indivíduos portadores de fissura de lábio e palato e de má oclusão de Classe III, comparado-os com indivíduos controle com má oclusão de Classes I ou III. MÉTODOS: oitenta e nove indivíduos, de ambos os sexos, com idade variando entre 5 e 27 anos, Classe I (n = 32), Classe III não fissurados (n = 29) e Classe III com fissura labiopalatina unilateral (n = 28), oriundos do Centro de Odontologia e Pesquisa da PUC-MG e do Centro de Atendimento de Fissurados do Hospital da Baleia e da PUC-MG (CENTRARE), foram selecionados. Medições lineares e angulares da base do crânio, maxila e mandíbula foram realizadas e avaliadas por um único examinador calibrado, por meio de radiografias cefalométricas. Foram utilizados os testes ANCOVA e correção de Bonferroni para a análise estatística dos dados. RESULTADOS: com relação à base do crânio, os resultados não indicaram diferença estatística entre indivíduos controle (Classe I) e os indivíduos com fissuras (p > 0,017). O grupo com fissura foi diferente do grupo Classe III somente em relação à medida CI.Sp.Ba (p = 0,015). O comprimento maxilar (Co-A) apresentou diferença estatisticamente significativa na comparação entre o grupo controle (Classe I) e o grupo com fissuras (p < 0,001), sendo que os fissurados apresentaram uma maxila menor. Não foram encontradas diferenças na mandíbula (Co-Gn) entre indivíduos do grupo controle (Classe I) e indivíduos fissurados (p = 1,000). CONCLUSÃO: os resultados sugerem que não houve diferença estatisticamente significativa na base do crânio entre indivíduos Classe I e III e indivíduos com fissuras de lábio e palato com má oclusão de Classe III. .


Subject(s)
Animals , Female , Cardiomegaly/metabolism , Cardiomegaly/pathology , Fetal Heart/metabolism , Fetal Heart/pathology , Maternal Nutritional Physiological Phenomena , Overnutrition/metabolism , Overnutrition/pathology , Biomarkers/metabolism , Calcineurin/metabolism , Cardiovascular Diseases/epidemiology , Extracellular Space , Fascia/pathology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Myofibrils/pathology , NFATC Transcription Factors/metabolism , Natriuretic Peptides/genetics , Natriuretic Peptides/metabolism , Phosphorylation , RNA, Messenger/metabolism , Sheep, Domestic , TOR Serine-Threonine Kinases/metabolism
3.
Indian J Exp Biol ; 2014 Feb; 52(2): 168-174
Article in English | IMSEAR | ID: sea-150346

ABSTRACT

Calcium calmodulin dependent protein ser/thr phosphatase, also referred to as protein phosphatase 2B (PP2B), is rich in neural tissue, and plays an important role in the overall function of the nervous system. Routinely phosphatase assay employs, para-Nitrophenlylphosphate (p-NPP), as a substrate, is also extended to assay PP2B. However, in the present study, the differential spectral characterstic property of tyrosine and phopshotyrosine has been exploited to employ the latter as a candidate substrate for the PP2B assay. The specific activity of PP2B using phosphortyrosine in bovine Bos Taurus indicus brain extract (Bos Taurus indicus), was measured in presence of different metal ions like Ca2+, Mn2+ and Mg2+. Further modulators like dithiothreitol (DTT), calmodulin (CaM) and metal chelators such as EGTA and EDTA were applied to confirm the role of divalent cations and to determine calcium calmodulin dependent phoshphatase activity. PP2B activity was higher with phosphotyrosine in presence of Ca2+ than with p-NPP. Further experiments, involving calmodulin as a modulator, confirmed phosphotyrosine as a better substrate over p-NPP. Calmodulin further enhanced the effect of phosphotyrosine as a potential substrate confirming calcium calmodulin dependent phosphatase activity. Phosphotyrosine is proposed as a better substrate in assaying calcium dependent phosphatase activity when compared to para-nitrophenylphosphate.


Subject(s)
Amino Acid Sequence , Animals , Brain Chemistry , Calcineurin/chemistry , Calcineurin/isolation & purification , Calcineurin/metabolism , Calcium/metabolism , Calmodulin/metabolism , Cattle , Kinetics , Phosphotyrosine/chemistry , Tissue Extracts/chemistry , Tyrosine/chemistry
4.
Braz. j. med. biol. res ; 45(11): 1045-1051, Nov. 2012. ilus
Article in English | LILACS | ID: lil-650569

ABSTRACT

We investigated whether Ca2+/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 μg/L), and Ca2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca2+]i transients, CaMKIIδB and CaN were evaluated by the Lowry method, [³H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 μg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 μg/L) significantly increased the amplitude of spontaneous [Ca2+]i transients, the total protein content, cell size, and [³H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca2+ chelator. The increases in protein content, cell size and [³H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδB by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca2+]i, CaMKIIδB and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca2+/CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α.


Subject(s)
Animals , Rats , Calcineurin/metabolism , /metabolism , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals, Newborn , Cells, Cultured , Cardiomegaly/chemically induced , Cardiomegaly/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats, Wistar , Signal Transduction
5.
Braz. j. med. biol. res ; 38(4): 559-563, Apr. 2005. ilus, tab
Article in English | LILACS | ID: lil-398176

ABSTRACT

Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA), on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g) maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip) for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA) muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001) and CsA significantly reduced the body weight gain (15.5 percent; P = 0.01) during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29 percent, respectively, P < 0.05). CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001). Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.


Subject(s)
Animals , Rats , Calcineurin/physiology , Cyclosporine/pharmacology , Enzyme Inhibitors/pharmacology , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects , Regeneration/drug effects , Cryosurgery , Calcineurin/drug effects , Calcineurin/metabolism , Disease Models, Animal , Muscle Fibers, Slow-Twitch/enzymology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Rats, Wistar
6.
Indian J Exp Biol ; 2000 Sep; 38(9): 948-50
Article in English | IMSEAR | ID: sea-60347

ABSTRACT

Aluminium (Al; 50 mg AlCl3/kg body wt/day) treatment caused a marked change in histological picture of normal brain as indicated by an increased number of vacuolated spaces. These changes returned to normal partially by simultaneous treatment with nifedipine (0.7 mg/kg body wt/day) and completely by similar treatment with 50 ppm calcium (CaCl2; 12.5 mg/kg body wt./day). Neither nifedipine nor calcium treatment alone altered the normal histological condition. The histological changes could not be correlated with the decrease in calcineurin activities in brain as nifedipine decreases calcineurin activity without any histological changes. Hence the histological changes may be considered as specific for Al and not due to a general decrease in calcineurin activity.


Subject(s)
Aluminum Compounds/toxicity , Animals , Brain/drug effects , Brain Diseases/chemically induced , Calcineurin/metabolism , Calcium/therapeutic use , Calcium Channel Blockers/therapeutic use , Calcium Channels/drug effects , Chlorides/toxicity , Homeostasis/drug effects , Male , Nifedipine/therapeutic use , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL